Fizika

Fizika (nga greqishtja e lashtëφυσική (ἐπιστήμη) phusikḗ (epistḗmē) “njohuri të natyrës”, nga φύσις phúsis “natyrë”) është dega e shkencës e cila merret me zbulimin dhe analizimin e dukuritë fizike, që përfshin studimin e lëndës dhe lëvizjen e saj në fabrikën e hapësirë-kohës, si dhe konceptet e forcës dhe energjisë. Në mënyrë më të përgjithshme ajo cilësohet si shkenca nëpërmjet së cilës njerëzit përpiqen të shpjegojnë dukuritë natyrore. Fizika njihet si “shkencë themelore” sepse fusha të tjera si kimia dhe biologjia hulumtojnë sisteme, veçoritë e të cilave varen nga ligjet e fizikës.

Zhvillimet në fizikë janë të lidhura ngushtë me sektorin teknologjik, si dhe kanë infleunca shumë të thellë në shkencat e tjera, përfshirë matematikën dhe filozofinë. Për shembull, zhvillimi i teorisë së elektromagnetizmit çoi në krijimin e pajisjeve të shumta elektrike (televizori, kompjuteri, pajisjet shtepiake); zhillimet në termodinamikë çuan në zhvillimin e mjeteve të motorizuara për transportin, si motori me avull; zhvillimet në mekanikë motivuan dhe ndihmuan në zhvillimin e analizës matematike, kimisë kuantike, dhe përdorimit të pajisjeve eksperimentale si mikroskopi elektronik në mikrobiologji.

Fizika ndahet në dy disiplina: në fizikën teorike dhe fizikën eksperimentale. Fizika teorike merret kryesisht me formalizimn teorik te dukurive i cili bazohet ne koncepte matematike, ndërsa fizika eksperimentale merret me rikrijimin dhe matjen e dukurive të njohura natyrore. Megjithëse kërkimet e shumta akoma kanë ngelur në disa probleme të pazgjidhura në fizikë si dhe fusha të shumta kerkimi të cilat nuk janë eksploruar ende plotësisht.

Implikimet filozofike

Lindja e fizikës si shkencë në shumë mënyra i detyrohet filozofisë së lashtë greke. Filozofë të ndryshëm grekë avancuan teoritë e tyre të natyrës. Këto filluan që nga përpjekjet e para të Talesit për të karakterizuar lëndën, deduktimet e Demokritit se lënda duhet të reduktohet në një gjendje të pandryshueshme, deri tek astronomia e Ptolemeut. Libri i Aristotelit Fizika mbeti burimi i vetëm formal i shkencës deri kur Galileo Galilei filloi të eksperimentonte për të provuar vërtetësinë e pohimeve. Deri në shekullin e 18-të, fizika ishte e njohur si “Filozofia Natyrore“.

Nga fillimi i shekullit të 19-të fizika filloi të cilësohej si një disiplinë e veçantë e ndarë nga filozofia dhe shkencat e tjera. Fizika, si me pjesën tjetër të shkencës, mbështetet në filozofinë e shkencës për të dhënë një përshkrim adekuat të metodës shkencore.[4] Metoda shkencore përdor arsyetime a priori ose a posteriori si dhe përdorimin e inferencave Baeziane për të matur vlefshmërinë e një teorie të caktuar.

E vërteta gjëndet vetëm në thjeshtësi, dhe jo në shumëllojshmërinë dhe konfuzionin e gjërave.

Zhvillimi i fizikes i ka dhënë përgjigjje shumë pyetjeve të filozofëve të lashtë, por gjithashtu ka ngritur edhe pyetje të reja. Filozofia e fizikës, studimi i çështjeve filozofike rreth fizikës, përfshin tema të tilla si natyra e hapësirës dhe kohësdeterminizmin, dhe pikëpamje metafizike të tilla si empiricizmirealizmi dhe natyralizmi.

Shumë fizikantë kanë shkruar për implikimet filozofike të punës së tyre, për shembull Laplasi, i cili hodhi tezën e determinizmit kauzal, Ervin Shrodingeri, i cili shkroi mbi mekanikën kuantike. Matematikani fizicist Roger Penrose është quajtur një Platonist nga Stephen Hawking, një çështje që Penrose e diskuton në librin e tij, Rruga drejt realitetit. Hawking i referohet vetvetes si një reduktionist i paturpshëm, gjë e cila bie ndesh me idetë e Penrose.

Historia

Isak Njutoni (1643-1727)

Që nga antikiteti, njerëzit janë përpjekur për të kuptuar sjelljen e fenomeneve natyrore. Një mister i madh në ato kohëra ishte sjellja e parashikueshme e objekteve qiellor si Dielli dhe Hëna. Disa teori u propozuan, shumica e të cilave u hodhën poshtë.

Filozofi Tales (rr. 624–546 p. e. s.) qe i pari që refuzoi të pranojë shpjegime të mbinatyrshme, fetare apo mitologjike për dukuritë e natyrës. ai deklaroi hapur se çdo fenomen ka një shkak fizik. Teoritë e hershme fizike ishin të frazuara në aspektin filozofik, dhe asnjëherë nuk vërtetoheshin me anë të testimeve sistematike eksperimentale siç bëhet në ditët e sotme. Shumë ide nga teoritë e pranuara të Ptolemeut ose të dhe Aristotelit nuk janë të sakta kur krahasohen me vërejtjet e përditshme.

Megjithatë, shumë filozofë dhe astronomë të lashtësisë dhanë përshkrime të sakta në fushat e atomizmit dhe astronomisëLeukipus (gjysma e parë e shek 5) qe i parë që propozoi atomizmin, kurse Arkimedi derivoi përshkrime shumë të sakta sasiore të mekanikëszhurmës dhe hidrostatikës, duke përfshirë një shpjegim për parimin e levësMesjeta pa shfaqjen e fizikës eksperimentale e cila morri formë midis përpjekjeve të fizikantëve Muslimanë, më i famshmi nga të cilët qe Alhazen, e ndjekur nga fizika moderne e cila kryesisht morri formë në fillimin e Evropës moderne nga shumë fizikantë, më i famshmi nga të cilët qe Isak Njutoni, i cili ndërtoi teoritë e tija mbi punën e Galileo Galilei dhe Johan Keplerit. Në shekullin e 20, puna e Albert Ajnshtajnit shënoi një drejtim të ri në fizikë që vazhdon edhe në ditët e sotme.

Degët e fizikës

Fushat e teorive fizike

Edhe pse fizika përfshin një kategori të gjerë fenomenesh, degët themelore të fizikës janë mekanika klasikeelektromagnetizmi (i cili përfshin optikën), relativitetitermodinamika, dhe mekanika kuantike. Seicila nga këto teori është testuar nga eksperimente të shumta dhe është provuar si e saktë në fushën e aplikimit të saj. Për shembull, mekanika klasike përshkuan në mënyrë korrekte lëvizjen e trupave në jetën e përditshme, megjithatë ajo nuk mund të aplikohet në shkallën atomike, atje ajo zëvendesohet nga mekanika kuantike, ndërsa për shpejtësi të krahasueshme me shpejtësinë e dritës, efektet relativistike bëhen më të rëndësishme. Edhe pse këto teori kuptohen shume mirë ato vazhdojnë të jenë fusha kërkimore — për shembull, një aspekt i rëndësishëm i mekanikës klasike e njohur si teoria e kaosit u zhvillua në shekullin e 20-te, tre shekuj pas formulimt origjinal të mekanikës nga Isak Njutoni (1642–1727). Teoritë themelore formojnë një bazë per studimin dhe kërkimin e temave më të specializuara. Një tabelë me këto teori, së bashku me konceptet që ato përdorin, mund të gjendet këtu.

Mekanika klasike

Një rrotull përdor parimin e avantazhit mekanik në mënyrë që një forcë e vogël mbi një distancë të madhe mund të ngrejë një ngarkesë të rëndë mbi një distancë të shkurtër.

Mekanika klasike është një model fizik i forcave që veprojnë mbi trupat dhe madhesite fizike. Zakonisht ajo referohet si “mekanika Njutoniane” sipas Isak Njutonit dhe ligjeve të Njutonit. Mekanika ndahet ne statikë, e cila modelon trupat në prehje, kinematikë, e cila modelon trupat në lëvizje, dhe dinamika, e cila modelon trupat mbi të cilët aplikohen forca të ndryshme. Mekanika klasike e trupave të vazhduar dhe të deformueshëm njihet si mekanika e vazhduar, e cila vetë ndahet në mekanikën e ngurtë dhe mekanikën fluide sipas gjëndjes së lëndës që studiohet. Kjo e fundit, mekanika e lëngjeve dhe gazeve, përfshin hidrostatikënhidrodinamikënpneumatikënaerodinamikën, dhe fusha të tjera. Mekanika statike merret me objekte që janë në prehje. Mekanika kinematike merret me objekte në lëvizje. Mekanika dinamike merret me lëvizjen e shkaktuar nga forcat që veprojnë mbi trupat.

Mekanika klasike jep rezultate të sakta në fushën e saj të aplikimit, e cila është eksperienca e përditshme. Ajo zëvendësohet nga mekanika relativiste për sisteme që lëvizin me shpejtësi të krahasueshme me atë të dritës, nga mekanika kuantike për sisteme në shkallë të vogël, dhe nga teoria kuantike relativiste e fushës për sisteme që kanë të dyja veçantitë e mësipërme. Megjithatë, mekanika klasike është akoma e dobishme, sepse ajo është shumë më e thjeshtë për tu aplikuar në krahasim me teoritë e tjera si dhe ka një fushë të gjerë aplikimi. Mekanika klasike mund të përdoret për të përshkruar lëvizjen e objekteve me përmasa të konsiderueshme (si topat ose makina), objekte astronomike (si planetet apo galaksitë), dhe disa objekte të caktuara mikroskopike (molekula organike).

Nje koncept i rëndësishëm në mekanikë është identifikimi i madhësive të konservuara si energjia dhe momenti, të cilat çojnë tek mekanika Lagranzhiane dhe ajo Hamiltoniane të cilat janë riformulime të ligjeve të Njutonit duke përdorur knoceptin e energjisë dhe nxitimit (impulsit). Teori si mekanika e lëngjeve si dhe teoria kinetike e gazeve janë rezultate të aplikimit të mekanikës klasike tek sistemet mikroskopike. Rezultate të kohëve të fundit në studimin e sistemeve dinamike jolineare i kanë dhënë lindje teorisë së kaosit, studimi i sistemeve ku ndyshime të vogla shkaktojnë efekte të mbëdha. Ligji gravitacional i Njutonit, i formuluar në mekanikën klasike, shpjegoi ligjet e Keplerit mbi lëvizjen planetare si dhe ndihmoi në transformimin e mekanikës klasike në një element të rëndësishëm të revolucionit shkencor.

Elektromagnetizmi

Vijat e forcës së fushës magnetike nga një copë magneti të formuara nga pluhuri i hekurit mbi një letër

Elektromagnetizmi përshkruan bashkëveprimet e thërrmijave të ngarkuara, me fushat elektrike dhe magnetike. Ai ndahet ne elektrostatikë, e cila bën studimin e bashkëveprimeve midis ngarkesave në prehje, dhe elektrodinamikë, e cila studion bashkëveprimet midiss ngarkesave në lëvizje dhe rrezatimit. Teoria klasike e elektromagnetizmit është e bazuar në ligjin e forcës së Lorencit dhe tek ekuacionet e Maksuellit.

Elektrostatika është studimi i fenomeneve që lidhen me trupa të ngarkuar në prehje. Siç përshkruhet nga ligji i Kulombit, trupa të tillë aplikojnë forca mbi njëri tjetrin. Sjellja e tyre mund të analizohet nëpërmjet koncepteve të fushës elektrike që rrethon çdo trup të ngarkuar, e tillë që çdo trup i ngarkuar i vendosur në këtë fushë është subjekt i nje force në madhësi të drejtëpërdrejtë me madhësinë e ngarkesës dhe madhësinë e vlerës së fushës magnetike në atë pozicion. Në qoftë se forca është tërheqëse apo shtytëse kjo varet nga polariteti i ngarkesës. Elektrostatika ka aplikime të shumta, që variojnë që nga analiza e fenomeneve si vetëtimat deri tek ndërtimi i motorave, siç është për shembull motori elektrostatik.

Elektrodinamika është studimi i fenomeneve që lidhen me trupa të ngarkuara në lëvizje dhe fusha elektrike dhe magnetike që ndryshojnë në kohë. Meqënëse një ngarkesë në lëvizje prodhon një fushë magnetike, elektrodinamika merret me efekte si magnetizmirrezatimi elektromagnetik, dhe induksioni elektromagnetik, të cilat përfshinë aplikime praktike si gjeneratori elektrik si dhe motori elektrik. Kjo pjesë e elektrodinamikës, njihet si elektrodinamika klasike, ajo u shpjegua në një mënyrë sistematike nga Xhejms Klark Maksuell. Duhet thënë se janë ekuacionet e Maksuellit ato të cilat i pershkruajnë fenomenet elektrike me një përgjithësi të madhe. Një zhvillim i mëvonshëm është elektrodinamika kuantike, e cila përfshin ligjet e teorisë kuantike në mënyrë që të shpjegojë bashkëveprimin e rrezatimit me lëndën. DirakuHajzenbergu, dhe Pauli ishin disa nga pionerët që formuluan hapat fillestare që çuan tek elektrodinamikën kuantike. Elektrodinamika relativiste merr parsysh korigjimet relativiste të lëvizjes së trupave të ngarkuar që lëvizin me shpejtësi të përafërt me atë të dritës. Ajo zbatohet në fenomene që lidhen me përshpejtues ngarkesash si dhe me tuba elektronesh në voltazhe dhe korrente të larta.

Elektromagnetizmi përfshin fenomene të tjera elektromagnetike të jetës së përditshme. Për shembull, drita është një fushë elektromagnetike oshiluese që rrezatohet nga thërrmija të ngarkuara në lëvizje. Përveç gravitetit, shumica e forcave të përditshme janë rrjedhojë të forcës elektromagnetike.

Principet e elektromagnetizmit gjejnë aplikime në disiplina të shumta si tek mikrovalëtantenat, makinat elektrike, satelitët e komunikimit, bioelektromagnetika, plazma, kërkimet në përshpejtuesit bërthamorëfibrat optike, në interferencën dhe kompatibilitetin elektromagnetik, në konvertimin e energjisë elektromekanike, deri tek aplikime teknologjike si radari dhe meteorologjia. Pajisjet elektromagnetike përfshinë transformatorëtçelsat elektrikeradio/TVtelefoninmotori elektriklinjat e transmisionitpërçuesit e valëvefibrat optike, dhe lazerin.

Termodinamika dhe mekanika statistike

Një sistem termodinamik tipik – nxehtësia lëviz nga dhoma e nxehtë (boileri) tek (kondensuesi) i ftohtë dhe nga ky proçes përftohet puna

Termodinamika studion efektet e ndryshimit të temperaturësshtypjes, dhe vëllimit në një sistem fizik në një shkallë makroskopike, si dhe transferimin e energjisë si nxehtësia. Historikisht, termodinamika u zhvillua për të rritur efiçencën e motorëve me avull të hershëm.

Pika fillestare për trajtimin termodinamik të një problemi janë ligjet e termodinamikës, të cilat postulojnë që energjia mund të shkëmbehet midis sistemeve fizike si nxehtësi ose punë. Ato postulojnë gjithashtu edhe ekzistencën e një madhësie të quajtur entropi, e cila mund të përcaktohet për çdo sistem. Në termodinamikë, bashkëveprimet midis ansambleve të mëdha të objekteve studiohen dhe kategorizohen. Rëndesi të madhe për këtë mbajnë konceptet e sistemit dhe e mjedisit rrethues. Një sistem përbehet nga thermija, lëvizja mesatare e të cilave përcakton vetitë e tij, të cilat janë të lidhura me njëra tjetrën nëpërmjet ekuacioneve të gjëndjes. Vetitë mund të kombinohen për të shprehur energjinë e brëndshme dhe potencialin termodinamik, të cilat janë shumë të vlefshme për përcaktimin e kushteve për ekuilibrin dhe proçeset spontane.

Mekanika statistike analizon sisteme makroskopike duke aplikuar parime statistikore në përbërësit e tyre mikroskopike. Ajo jep një mënyrë për lidhjen e vetive mikroskopike të atomeve dhe molekulave individuale me vetitë makroskopike të të gjithë materialit që mund të observohen në jetën e përditshme. Termodinamika mund të shpjegohet si një rezultat i natyrshëm i statistikës dhe mekanikës (klasike dhe kuantike) në një nivel mikroskopik. Në vecanti, mund të përdoret për llogaritjen e madhësive termodinamike të vetive të materialeve nga analizat spektroskopike të molekulave individuale. Në këtë mënyrë, ligjet e gazeve mund të derivohen, nga supozimi se gazi është një koleksion thërrmijash inidviduale, të cilat mund të trajtohen si sfera të ngurta me masë. Nga ana tjetër, nëqoftëse këto thërrmija individuale kanë një ngarkesë elektrike, atëhere përshpejtimi individual i këtyre thërrmijave do të shkaktojë emitimin e dritës. Ishin këto fakte të marra në konsiderate ato që çuan Maks Plankun të formulonte ligjin e rrezatimit të trupit të zi, vetem duke supozuar qe spektri i rrezatimit te emituar nga keto thermija nuk është constant ne lidhje me frekuencen, por është i kuantizuar.

Relativiteti

Test me saktësi të madhe i relativitetit të përgjithshëm nga sonda Kazini (pikëpamje artistike): sinjalet e radios të dërguara midis Tokës dhe sondës (valët e gjelbërta) janë të vonuara nga përkulja e hapësirë-kohës (vijat blu).

Relativiteti është një përgjithësim i mekanikes klasike që përshkruan objekte masive ose objekte që lëvizin me shpejtësi shumë të mbëdha, ose sisteme shumë masive. Ai përfshin relativitetin special dhe të përgjithshëm.

Teoria e relativitetit special u propozua më 1905 nga Albert Ajnshtajni në artikullin e tij “Mbi Elektrodinamikën e trupave në lëvizje“. Titulli i artikullit i referohet faktit se relativiteti special zgjidh problemin midis ekuacioneve të Maksuellit dhe mekanikes klasike. Teoria është e bazuar mbi dy postulate1. forma matematike e ligjeve fizike është invariante në të gjitha sistemet inerciale; dhe 2. shpejtësia e dritës në boshllëk është konstante dhe e pavarur nga burimi i vëzhguesit. Në mënyrë që këto dy postulate mos kundështojnë njëra tjetrën kërkohet që hapësira dhe koha të unifikohen në fabrikën e hapesirë-kohës e cila varet në llojin e sistemit.

Relativitei special jep një sërë rezultatesh të habitshme që duket sikur shkojnë kundër intuitës, megjithatë të gjitha këto parashikime janë të verifikuara eksperimentalisht.Ai hedh poshte nocionet absolute të hapësirës dhe kohës duke pohuar se distanca dhe koha varen tek vëzhguesi, koha dhe hapësira perceptohen në mënyrë të ndryshme, në varësi të vëzhguesit. Teoria nxjerr në perfundimin se ndryshimi tek masadimensionet, dhe koha shoqërohen me ndryshimet e shpejtësisë së trupit. Ajo gjithashtu jep edhe ekuivalencën e lëndës me energjinë, siç jepet nga formula e ekuivalencës së masës me energjinë E = mc2, ku c është shpejtesia e dritës në boshllëk. Relativiteti special dhe relativiteti Galilean i mekanikës Njutoniane bien dakort kur shpejtësitë e trupave janë të vogla në krahasim me atë të dritës. Relativiteti special nuk e përshkruan gravitacionin; megjithatë duhet theksuar se ai mund të pershkruajë levizje të nxituara në mungesë të gravitetit.Gabim referencash: Duke mbyllur </ref> mungon për etiketën <ref>

Relativiteti i përgjithshëm është teoria gjeometrike e gravitacionit e publikuar nga Albert Ajnshtajni në 1915/16.[19][20] Ajo unifikon relativitetin specialligjin universal të gravitetit të Njutonit, duke futur idenë se gravitacioni mund të përshkruhet nga kurbatura e hapësirës dhe kohës. Në relativitetin e përgjithshëm, kurbatura e hapësirë-kohës prodhohet nga energjia e lëndës dhe rrezatimit. Relativiteti i përgjithshëm ndryshon nga metrikat e teorive të gravitacionit nga përdorimi i ekuacionet e fushës të Ajnshtajnit të cilat lidhin përmbajtjen e hapësirë-kohës me vete hapësirë-kohën. Invarianca lokale e Lorencit kërkon që manifoldi në RP të jetë 4-dimensional dhe Lorencian në vend të atij Rimanian. Për më tepër, parimi i kovariancës së përgjithshme e bën të domosdoshme përdorimin e analizës tensoriale.

Suksesi i pare i relativitetit të përgjithshëm qe në shpjegimin e preçesionit anormal të perihelionit të Mërkurit. Në 1919, Artur Edington lajmëroi që vëzhgimi i një ylli pranë eklipsit diellor konfirmoi parashikimet e relativitetit të përgjithshëm se trupat masivë mund të përkulin dritën. Që atëhere, shumë observime dhe eksperimente kanë konfirmuar shumë nga parashikimet e relativitetit të përgjithshëm, përfshirë bymimi kohor gravitacionalzhvendosja në të kuqe e gjatësisë valore të dritës, vonesën e sinjalit, dhe rrezatimin gravitacional. Për më tepër, vëzhgime të shumta në kohën e sotme interpretohen si nje afirmim pozitiv i një nga parashikimeve më të çuditshme dhe ekzotike të relativitetit të përgjithshëm, ekzistencës së vrimave të zeza.

Mekanika kuantike

Disa nga orbitalet e para elektronike të atomit të hidrogjenit të treguara si grafe të ngjyrosura të densitetit probabilistik

Mekanika kuantike është dega e fizikës që trajton sistemet atomike dhe nënatomike si dhe bashkëveprimin e tyre me rrezatimin në terma të madhësive të observueshme. Ajo bazohet mbi faktin që të gjitha format e energjisë lëshohen në njësi diskrete të quajtura “kuante“. Duhet theksuar se, teoria kuantike lejon vetëm përdorimin e llogaritjeve probabilistike ose statistike mbi tiparet e thërrmijave nënatomike, të dhëna nëpërmjet funksionit valorEkuacioni i Shrodingerit në mekanikën kuantike luan rolin analog që ligjet e Njutonit dhe ligji i konservimit të energjisë luajnë në mekanikën klasike — pra, ai parashikon sjelljen e sistemeve dinamike në të ardhmen — ky funksion është një ekuacion vale i dhënë në terma të funksionit valor i cili parashikon në një mënyrë analitike dhe preçise probabilitetin e ngjarjeve dhe rezultateve.

Sipas teorive të vjetra të fizikës klasike, energjia trajtohet si një fenomen i vazhdueshëm, kurse lënda mendohet si diçka që zë një vend në hapësire dhe lëviz në mënyrë të vazhdueshme. Sipas teorisë kuantike, energjia emetohet dhe absorbohet në njësi të vogla, diskrete. Një copë individuale ose paketë energjie, quhet një kuant (shumës. kuante), kështu që në disa raste ajo sillet tamam si një grimcë lënde; të gjitha thërrmijat shfaqin veti valore kur janë në lëvizje kështu që në mekanikën kuantike lënda nuk mendohet si e lokalizuar në një vend por si e shpërndarë në një farë mënyre.Për shembull, drita, ose rrezatimi elektromagnetik, që lëshohet ose absorbohet nga një atom ka vetëm frekuenca (ose gjatësi valësh) të caktuara, siç mund të shihet nga vijat spektrale që i korrespondojnë elementit të atij atomi. Teoria kuantike tregon se keto frekuenca i korrespondojnë energjive të përcaktuara të kuanteve të dritës, ose fotoneve, kjo del nga fakti qe elektronet në një atom lejohen të marrin vetem vlera të caktuara të energjisë, ose e thënë ndryshe elektronet mund të ekzistojne vetëm në nivele të caktuara energjitike, një kuant energjie emetohet ose absorbohet kur frekuenca është në proporcion të drejtë me diferencën e energjisë me dy niveleve.

Formalizmi i mekanikes kuantike u zhvillua gjatë 1920-ve. Në 1924, Luiz de Brojli propozoi se valët dritore nuk janë të vetmet të cilat shfaqin një karaker dual, pra vala sillet si thërmije siç ndodh në efektin fotoelektrik dhe në spektrat atomike, edhe thërrmijat grimcore shfaqin dukuri valore. Sugjerimi i de Brojlit dha dy formulime të ndryshme të mekanikës kuantike. Mekanika valore e Ervin Shrodingerit (1926) përfshin përdorimin e një koncepti matematik, funksionit valor, i cili është i lidhur me probabilitetin e gjëndjes së një thërrmije në një pikë të hapësirës. Mekanika e matricave e Uerner Hajzenbergut (1925) nuk e përmend fare konceptin e funksionit valor ose koncepte të ngjashme, e megjithatë ajo u tregua se ishte komplet ekuivalente me teorinë e Shrodingerit. Një zbulim shume i rëndësishëm në teorine kuantike është parimi i papërcaktueshmërisë, i enunciuar për herë të parë nga Hajzenbergu në 1927, i cili vendos një limit absolut teorik në saktësinë që mund të arrihet në disa matje; si rezultat i kesaj, mendimi i disa shkencetareve se gjendja fizike e nje sistemi mund të matet në menyre ekzakte për tu përdorur në parashikimin e gjendjes së sistemit në të ardhmen duhet të braktisej. Mekanika kuantike u kombinua me teorinë e relativitetit në formulimin e P. A. M. Dirakut (1928), e cila, përveç të tjerash, parashikoi ekzistencën e anti-thërrmijave. Zhvillime të tjera të teorisë përfshinë statistikën kuantike, të prezantuar në një formë nga Ajnshtajni dhe S. N. Bose (statistika Bose-Ajnshtajn) dhe në një formë tjetër nga Diraku dhe Enriko Fermi ( statistika Fermi-Dirak); Elektrodinamika kuantike, merret me bashkeveprimin midis thërrmijave të ngarkuara dhe fushës elektromagnetike; përgjithësimi i saj jepet nga, teoria kuantike e fushës; dhe elektronika kuantike. Zbulimi i mekanikës kuantike në fillimin e shekullit të 20-të revolucionoi fizikën, sic shihet mekanika kuantike është një nga degët më themelore në pothuajse të gjitha fushat kontemporare të kerkimit.

Kërkimi

Teoria dhe eksperimenti

Kultura e kërkimit në fizikë ndryshon nga shumica e shkencave në ndarjen e teorisë dhe eksperimentit. Që nga shekulli i dymbëdhjetë, shumica e fizikantëve jane specializuar ose në fizikën teorike ose në atë eksperimentale. Fizikanti i madh Italian Enriko Fermi (19011954), i cili bëri kontribute themelore si në teori ashtu edhe në fushën eksperimentale në fizikën bërthamore, mund të thuhet se qe një veçanti. Në kontrast me këtë, pothuajse të gjithë teoricienët e suksesshëm në biologji dhe kimi (për shembull kimisti kuantik dhe biokimisti Amerikan Linus Pauling) kane qënë eksperimentalist, edhe pse në kohët e fundit kjo po ndryshon.

Teoricienet kërkojnë të zhvillojnë modele matematike që bien dakort me eksperimentet ekzistuese por në të njëjtën kohë bëjnë parashikime për rezultate në të ardhmen, ndërsa eksperimentalistët bëjnë eksperimente për testimin e parashikimeve teorike si dhe eksplorojnë (zbulojnë) fenomene te reja. Edhe pse teoria dhe eksperimenti janë të zhvilluara në mënyrë të ndarë ato varen ngushtë tek njëra tjetra. Progresi në fizikë vjen kur eksperimentalistët bëjnë një zbulim që teoritë ekzistuese nuk mund ta shpjegojnë, ose kur teoritë e reja japin baza për parashikime eksperimentale të testueshme. Teoricienët punojnë ngushtë me eksperimentalistët që zakonisht janë ata që përdorin fenomenologjinë.

Fizika teorike është e lidhur ngushtë me matematikën, e cila është gjuha mbi të cilën teoritë fizike janë të bazuara, duhet thënë se fusha të tëra të matematikës, si analiza matematike, u shpikën posaçërisht për të zgjidhur problemet fizikë.

Fushat e kërkimit

Fushat kontemporante të kërkimit në fizikë mund të ndahen në fizikën e materies së kondensuarfizikën atomike, molekulare, dhe optikefizikën bërthamoreastrofizikëngjeofizikën dhe biofizikën. Disa departamente fizike kane edhe fusha speciale kerkimi mbi edukimin në fizikë. Që nga shekulli i njëzetë, fushat individuale të fizikës kanë filluar të bëhen shumë të specializuara, sot shumica e fizikantëve punojnë në një fushë të vetme gjatë gjithë karrieres së tyre. “Universalistë” si Albert Ajnshtajni (1879–1955) dhe Lev Landau (1908–1968), të cilët punuan në fusha të shumta në fizikë, në kohët e sotme janë shumë të rrallë.

Fizika e materies së kondensuar

Të dhëna mbi shpërndarjen e shpejtësisë për një gaz të atomeve të rubidiumit, konfirmuan zbulimin e një faze të re të lëndës të quajtur, kondensatet Boze-Ajnshtajn

Fizika e materies së kondensuar është një fushë e fizikës që merret me vetitë fizike makroskopike të lëndës. Në vecanti, ajo merret me fazat e kondensuara që shfaqen sa herë që numri i përbërëseve të sistemit është shumë i madh dhe forcat e bashkëveprimit midis përbërëseve janë shumë të forta. Shembujt më të njohur janë fazat e kondensuara të ngurta dhe lëngjet, të cilat janë rrjedhojë e lidhjeve dhe forcave elektromagnetike midis atomeve. Forma më ekzotike të fazave të kondensuara përfshinë superfluidet dhe Kondensatet Boze-Ajnshtajn të gjetura në disa sisteme atomike në temperatura shume të ulta, si dhe fazën superpërcjellëse që shfaqet në elektrone përcjellës në disa materiale të caktuara, si dhe fazat ferromagnetike dhe antiferromagnetike të spinit në laticën atomike.

Fizika atomike, molekulare, dhe optike

Një shkencëtar ushtrie punon me një lazer mbi një tavolinë optike.

Fizika atomikemolekulare, dhe optike (AMO) është studimi i bashkëveprimeve lëndë-lëndë dhe dritë-lëndë në shkallën e një atomi të vetëm ose për disa struktura që përmbajnë vetëm pak atome. Të treja deget janë të grupuara së bashku për shkak të ndërlidhjeve, ngjashmërise së metodave që përdoren dhe shkalleve të ngjashme të energjisë. Të treja zonat përfshijnë trajtime klasike ose kuantike; siç dihet analizimi i sistemit bëhet nga një këndvështrim mikrosokpik (në kontrast me analizimin makroskopik).

Fizika atomike studjon çatinë elektronike të atomeve. Fusha kërkimore në kohët tona po fokusohet në kontrollin kuantik, ftohjen dhe zënien në grackë të atomeve dhe ioneve, në përplasjet dinamike në temperaturë të ulta si dhe në sjelljen e gazeve që bashkëveprojnë në mënyrë të dobët (Kondensatet Bose-Ajnshtajn si dhe sistemet e holluara Fermionike të degjeneruara), në matjen me preçision të konstanteve themelore si dhe në efektet e korrelacioneve të elektroneve në strukturën dhe dinamikën e sistemeve. Fizika atomike është e infulencuar nga bërthama (shiko, për shembull, ndarjen e niveleve energjitike), kurse fenomene intra-bërthamore si fisioni dhe fuzioni konsiderohen pjesë të fizikës bërthmore.

Fizika molekulare fokusohet në struktura multi-atomike si dhe në bashkëveprimin e tyre të brendshëm ose të jashtëm me lëndën dhe dritën. Fizika optike është e veçantë nga optika sepse ajo nuk tenton që të fokusohet në kontrollimin e fushave klasike të dritës nga objektet makroskopike, por në vetitë themelore të fushave optike dhe bashkëveprimit të tyre me dritën në botën mikroskopike.

Fizika bërthamore

Një ngjarje e simuluar në një nga detektorët CMS të Përplasësi i Madh i Hadroneve, tregon shfaqjen e bozonit Higgs.

Fizika bërthamore merret me studimin e përbërëseve elementare të lëndës dhe energjisë, si dhe me bashkëvepimet mes tyre. Ajo njihet gjithashtu edhe si “fizika e energjisë së lartë”, sepse shumë thërrmija elementare nuk shfaqen zakonisht, veçse në përplasje që ndodhin në energjira shumë të larta me thërrmijat e tjera, siç ndodh në përshpejtuesit e thërrmijave.

Tani, bashkëveprimet e thërrmijave elementare përshkruhen nga Modeli Standart. Ky model merr parasysh 12 thërrmija të njohura të lëndes të cilat bashkëveprojnë nëpërmjet forcave themelore të fortëtë dobët, dhe asaj elektromagnetike. Dinamika e thërrmijave të lëndës përshkruhet nëpërmjet shkëmbimit thërrmijave mesazhere që mbajnë forcat. Këto thërrmija mesazhere njihen rrespektivisht si gluonetW dhe W+ dhe bozoni Z, si dhe fotoni. Modeli Standart gjithashtu parashikon ekzistencën e një thërrmije të njohur si bozoni Higgs, ekzistenca e të cilit nuk është verifikuar akoma.

Astrofizika

Imazhi i dritës së dukshme nga thellësia e universitFusha ultra e thellë e Habëllit

Astrofizika dhe astronomia janë aplikimet e teorisë dhe metodave fizike për studimin e strukturës yjoreevolucionit yjor, origjinës së sistemit diellor, dhe problemeve të lidhura me kozmologjinë. Për shkak se astrofizika është një subjekt shumë i gjerë, astrofizikantët zakonisht aplikojnë shumë disiplina të fizikës, përfshirë mekanikën, elektromagnetizmin, mekanikën statistike, termodinamikën, mekanikën kuantike, relativitetin, fizikën bërthamore, dhe fizikën atomiko-molekulare.

Astrofizika u zhvillua nga shkenca e vjetër e astronomisë. Astronomët e civilizimeve të hershme bërën vëzhgime metodike të qiellit, kjo duket nga artifaktet e shumta astronomike të kohëve të hershme të gjetura në kultura të ndryshme. Pas shekujsh zhvillimi nga astronomët Babiloniane dhe Greke, astronomia perëndimore u fut në një periudhë letargjike për katërmbëdhjetë shekuj deri në ardhjen e Nicolaus Copernicus i cili modifikoi sistemin Ptolemaik duke vendosur diellin në qendër të universit. Observimet e detajuara të Tycho Brahes çuan në Ligjet e Keplerit të lëvizjes planetare. Në të njëjtën kohë teleskopi i Galileut ndihmoi në zhvillimin e shkencës moderne. Teoria e Njutonit e gravitetit universal dha një bazë dinamike për ligjet e Keplerit. Në fillim te shekullit te 19-te., shkenca e mekanikes qiellore arriti një stad shumë të zhvilluar në duart e Leonhard EulerJ. L. LagranzhitP. S. Laplasit, dhe të tjerëve. Teknika matematike të fuqishme bënë të mundur zgjidhjen analitike të disa nga problemeve më thelbesore të gravitacionit klasik të zbatura tek sistemi diellor. Në fund të shekullit të 19-të, zbulimi i vijave spektrale në dritën e diellit provoi se elementet e gjetur tek Dielli gjënden edhe në Toke. Gjatë kësaj kohe interesi u zhvendos nga përcaktimi i distancës dhe pozicionit të yjeve tek përcaktimi i përbërjes së tyre fizike (shikoni struktura yjore dhe evolucioni yjor). Për shkak se aplikimi i fizikës tek astronomia ka zënë nje rol thelbësor përgjatë shekullit të 20-të, diferencimi midis astronomisë dhe astrofizikës është zhdukur.

Zbulimi nga Karl Jansky në 1931 që radio sinjalet e emetuara nga trupat qiellore shënoi fillimin e shkencës së radio astronomisë. Në kohët e fundit, zbulimet astronomike janë zgjeruar me hedhjen e sondave kozmike. Perturbimet dhe interferenca nga atmosfera e Tokes e bejnë të domosdoshme përdorimin e astronomisë së rrezeve-X,infra te kuqeultravioletrreze gamaTeleskopi hapësinor Habëll, i lëshuar në 1990, ka bërë të mundur shikimin e pamjeve vizuale të një kualiteti dhe qartësie të lartë që ja kalon pamjeve të marra nga instrumentet tokësore; vëzhgimet nga Toka përdorin teleskope me optikë adaptive e cila bën të mundur kompesimin e turbulencës pranë atmosferës së Tokës.

Kozmologjia fizike është studimi i formimit dhe evolucionit të universit në shkallat më të mbëdha. Teoria e relativitetit e Albert Ajnshtajnit luan një rol thelbësor në teoritë moderne kozmologjike. Në fillim të shekullit të 20-të, zbulimi i Habëllit që universi po zgjerohej, siç tregohet nga diagrami i Habëllit, bëri që të dilnin teori të reja si Modeli i gjendjes se qendrueshme te universit dhe ai i Bumit te madh. Teori e Bumit te Madh u konfirmua nga suksesi i parashikimeve të teorisë së Nuklosintezës së Bumit te Madh dhe zbulimit të sfondit kozmik mikrovalor në 1964. Modeli i Bumit të madh qëndron mbi dy shtylla teorike: Teoria e relativitetit të përgjithshëm e Albert Ajnshtajnit dhe parimi kozmologjik. Kozmologjistët, kohët e fundit kanë formuar një model preçiz të evolucionit të universit, i cili perfshin inflacionin kozmikenergjinë e zezë dhe lëndën e zezë.

Fizika e aplikuar

Fizika e aplikuar është një term i përgjithshëm për fizikën që hyn në pune për një përdorim të caktuar. Aplikimi dallohet nga fizika e pastër nga një kombinim delikat i faktorëve si motivacioni i kërkuesve dhe sjellja e tyre në lidhje me teknologjinë ose shkencën që ndikohet nga puna e tyre. Kjo degë ndryshon nga inxhinieria sepse fizikanti mund të mos dizenjojë ndonje gjë të caktuar, por ai i perdor konceptet fizike gjatë kohës që bën kërkime me qëllim që të zhvillojë teknologji të reja për zgjidhjen e një problemi. Kjo në një fare mënyre është e ngjashme me matematikën e aplikuar. Fizikantët e aplikuar mund të jenë të interesuar në përdorimin e fizikës për kërkime shkencore. Për shembull,njerzit që punojnë në përshpejtuesit bërthamorë kërkojnë që të ndërtojnë detektorë më të mirë thërrmijash për kërkime në fizikën teorike.

Fizika përdoret jashtëzakonisht shumë në çdo degë inxhinierie. Për shembull, statika, një nëndegë e mekanikës, përdoret për ndërtimin e urave ose strukturave të tjera, kurse akustika përdoret për të ndërtuar salla më të mira për koncertet ose operat. Një kuptim i fizikës është shumë i rëndësishëm në dizenjimin e simulatorëve realistë për fluturime ose për lojrat kompjuterike, si në motorin fizik, apo edhe në filma për arritjen e efekteve realiste.

Fizika edukative

Fizika edukative i referohet metodave të tanishme pedagogjike që përdoren për të mësuar fizikën, si dhe asaj pjese të kërkimeve pedagogjike që kërkojnë të përmirësojnë këto metoda. Historikisht, fizika është mësuar në shkollën e lartë dhe në nivelin unversitar, së bashku me ushtrimet e laboratorit të cilat kanë për qëllim verifikimin e koncepteve që janë shpjeguar gjatë leksioneve. Programet universitare zakonisht përfshinë trainimin në degët themelore, të fizikës klasike dhe asaj kuantike. Trainimi specializohet më tej kur studenti mbron doktoraturën për një temë të caktuar. Shumica e universiteteve kontemporane kanë grupe të specializuar brenda departamentit të cilat merren me një program të caktuar (si psh grupi i optikës kuantike). Një nga pedagogët më te famshëm në fizikë Riçard Fajman mendonte se dhënia e mësimit ne fizikë qe një art më vete.

Leave a Reply

Your email address will not be published.

1 Comment